CMS

Motivation

Sharper turn-on

- Will use events with high efficiency only for physics analysis
 - No need to waste bandwidth with events in turn-on

What can be done without any new effort?

- Turn-on can be sharpened simply by combining 1, 2, 3 and 4 jet 4x4 thresholds.
- Accept a few kHz higher rate.
- However, community felt that they needed more accurate level-1 jet counting ability
 Implication of 12x12 algorithm
 - 12x12 algorithm ~= 0.7 jet cone radius
 - Sharper turn-on assured
 - Better jet counting ability
 - However,
 - Loose physics in the turn-on portion
 - i.e., H(200 GeV) $\rightarrow \tau \tau \rightarrow h \ h \ X$

Saviour

- Dedicated τ algorithm
- Use bandwidth saved by sharpening the turn on for a narrow jet (τ) stream.

Updated Jet, τ Algorithms

- 12x12 trigger tower E_T sums sliding in 4x4 steps with central 4x4 > others τ algorithm (isolated narrow energy deposits)
- Redefine Jet as τ if none of the 9 4x4 region τ -veto bits are on Output
 - Sorted top 4 jets & top 4 τ -jets & counts of jets above programmable thresholds

Jet/τ algorithm - receiver card

Minor revision of Receiver card LUTs

- Jet E_→ LUTs (1 for ECAL and 1 for HCAL)
 - Nonlinear 8-bit to linear 8-bit for jet sums
- EM E_T LUT
 - Nonlinear 8-bit to linear 7-bit for EM algorithm
 - 1 ECAL activity bit for generating τ bit (new)
- FG/H Veto/τ Activity LUT
 - Address: bottom 4 bits HCAL non-linear E_τ (pegged), top 5 bits ECAL non-linear E_τ, FG bit
 - Data: 1 bit EM veto(no change), 1 HCAL activity bit (new)

4x4 Jet sum

- Sum to obtain 10-bit 4x4 region sum
- Output to Jet/Summary card

Activity Bit Counter (new)

- Sum 16 bits per E and H region separately
- All logic runs at 4x
- Sums output to Jet/Summary card

Input

Jet/Summary Card

- From 7 receiver cards
 - 2 4x4 region 10-bit E_⊤ + overflow values
 - 2 4x4 region 2-bit activity counts (new)
- From 7 EID cards
 - 2 isolated electrons 2 x 6-bit rank
 - 2 nonisolated electrons 2 x 6 bit rank

Processing

- τ veto bit extraction for 14 4x4 regions (new)
 - τ veto bit set if E or H activity counts >2
 - $\tau_{V}^{1} = (A_{E}^{1} AND A_{E}^{2}) OR (A_{H}^{1} AND A_{H}^{2})$
- Threshold 4x4 E_T to get μ_{iso} bits
- Sort isolated & nonisolated electrons separately Output (For 18 HB/HE Crates)
 - To Cluster Crate (new)
 - 14 regions x (10 bits E_T + ovfl + τ bit) = 168 bits
 - To Global Muon Crate
 - 14 regions x (μ bit + μ_{iso} bit) = 28 bits
 - To Global Calorimeter Crate
 - 8 x (6 bit E_{τ} rank + 4 bit position) = 80 bits
 - Top 4 isolated electrons
 - Top 4 non-isolated electrons

Implementation: Cluster Crate

Regional Crates send 4x4 energies and τ-veto bit to cluster crate

- Uses diff. ECL links at 80 MHz same as proven existing inter-crate sharing Cluster crate shares data on a custom 160 MHz ECL point-to-point backplane
- Similar to existing regional crate backplane same proven technology Cluster crate uses 160 MHz Adder and Sort ASICs (Minimum additional latency)
- Existing Adder ASIC already in production, just order more Global calorimeter data
 - ullet Receives data for half the number of candidates but two types: jet and au

Cluster crate

9 Cluster processor cards

- Each covering 40° φ x 6 η
- Input from 2 (+η and -η) regional crates
- 3 Cluster output cards

Jet/τ algorithm - clustering

Cluster Crate

- Clusters E_⊤ to 12x12 tower regions
- Classifies as jet or τ , ranks, sorts
- Forwards top 4 jets &τs to global calorimeter trigger Cluster Processor Cards (9)
 - Receive data from +η and -η regional crates

 - 2 x 14 η towers x 12 bits = 336 bits
 - Share neighbor data for two 20° phi regions
 - Backplane data sharing for overlap = 336 bits
 - Sum 3x3 region, i.e., 12x12 tower, energies with the center greater than neighbors (prevent double count) requirement
 - Convert result to 6 bit rank and 5 bit position
 - Result: 28 candidates
 - Classify as τ if all 3x3 τ veto bits = 0 otherwise as jet
 - Sort to find top 4 jet candidates
 - Sort to find top 4 τ candidates
 - Sum +η and -η 20° φ sectors to get four E_T values
 - 10 bit energy + 2 bit overflow (OR the overflows)
 - Transfer output to Jet Cluster Output Card
 - 4x11 bits (jets) + 4x11 bits (τ s) + 4x11 bits (E_T) = 132 bits

Cluster Output Cards (3)

- Receive data on backplane from 3 Jet Cluster Processor Cards (3x132 = 396 bits)
- Output all data to Global Calorimeter Trigger
 - 396 bits on 6 cables

Jet rate comparison

4x4 Jet trigger rate (original algorithm)

12x12 Jet Trigger rate (new algorithm)

Jet efficiency comparison

High Luminosity τ trigger rate

Low Luminosity τ trigger rate

SUSY Higgs (M_H =200 GeV, tan β =15)

H(200 GeV) $\rightarrow \tau\tau \rightarrow$ 2 hadrons + X Efficiency Comparison Baseline algorithms vs new τ algorithm

	High Luminosity	Low Luminosity
All baseline algorithms	22.2%	86.4%
Just the new τ algorithm	37.2%	76.1%

Algorithm cutoffs are to be further optimized:

- High lumi: single τ E_{τ} > 80 GeV, double τ E_{τ} > 40 GeV
- Low lumi: single τ E_{τ} > 50 GeV, double τ E_{τ} > 30 GeV

HF Trigger Mapping

New: 2 CMS HF Calorimeters mapping onto 12 32-Channel Receiver Cards

Old: 2 CMS HF Calorimeters mapping onto 6 32-Channel Receiver Cards

∠ Old: Δφ=30° Wedge⇒half Receiver Card - 12 Channels

Each Receiver Card handles two 30° Wedges, one forward and one backward at same φ (using **24** out of **32** available channels)

New: Δφ=20° Wedge⇒
quarter Receiver Card - 6 Channels
Each Receiver Card handles
two 20° Wedges, one forward
and one backward at same φ
(using 12 out of **32** available channels)

Readout segmentation: $36\phi \times 12\eta \times 2z \times 2F/B$ New Trigger Tower segmentation: $18\phi \times 6\eta \times 2F/B$ Old Trigger Tower segmentation: $12\phi \times 12\eta \times 2F/B$

Updated so that HB, HE and HF all use 20° \$\phi\$ divisions

- No simulation studies with HF yet
 - ORCA implementation of trigger primitives & algorithms in progress

HF algorithm - receiver card

Receiver card memory lookup tables - Reprogrammed for HF

- +Z and -Z E_T LUTs
 - Nonlinear 8-bit to linear 8-bit for E_⊤ sums
- +Z and -Z Jet LUTs
 - Nonlinear 8-bit to 1-bit jet threshold bit
- Address bits for -Z Jet LUT are $^{NL}E_{T \to Z}^{\ 8}$ instead of $^{NL}E_{T \to H}^{\ 0-3}$, $^{NL}E_{T \to E}^{\ 3-7}$ and FG.

E, sum for each of 2 \phi regions

- Sum +Z and -Z towers together to obtain E_T sum same as HB/HE
- Up to 16 η towers can be accommodated (using 6 now) Jet count for each of 2 φ regions
 - Same counter as HB/HE activity counter
 - Sum up to 16 bits per +Z or -Z region seperately to obtain 2
 2-bit sums pegged to 3 on overflow

Output to HF Summary Card for each of 2 \(\phi \) regions

- 10 bit E_⊤ sum + 1 bit overflow
- +Z and -Z jet counts

HF algorithm - summary

Two HF Crates

- 5 receiver cards (mods. on previous slide)
 - One card is half used
- HF summary card (different from J/S card)
- 2 receiver card and 7 EID card slots unused
 HF Summary card (Variant of Jet/Summary card)
 - HF Jet Counting
 - Continue +Z and -Z HF-jet count sums (separately) to get crate level 3-bit +Z and - Z HF-jet counts
 - HF E_T sums
 - Just pass through

HF Output

- To Global Calorimeter Crate
 - 105 bits per crate
 - 3 bits +Z jet count
 - 3 bits -Z jet count
 - 9 φ regions x (10 bit E_T sum + 1 bit overflow)

Global Calorimeter Trigger

Output to Global Calorimeter Trigger

- From 18 regional crates
 - NonIso elec: 18 x 4 cand. x 10 bits (4 bit loc)
 - Iso. electrons: 18 x 4 cand. x 10 bits (4 bit loc)
- From 1 cluster crate
 - Jets: 9 x 4 candidates x 11 bits (5 bit loc)
 - Taus: 9 x 4 candidates x 11 bits (5 bit loc)
- From 2 HF crates
 - HF E_⊤: 2 x 9 \(\phi \) regions x 11 bits
 - HF Jet counts: 2 x 2 (+Z & -Z) x 3 bits

Global Calorimeter Functions

- Sort non-iso & iso electrons, jets and taus
 - 6 bit E_T and 8 bit location for top 4 objects of each of the four types
- Convert E_T sums to E_X and E_Y and sum
 - Calculate missing and total E_⊤ information
- Jet count
 - HB/HE counts (in η ranges), +Z and -Z HF
- Make Luminosity histogram
 - 18 φ x 2 η bins

CMS

Summary

New τ and jet algorithms

- Conceptual design done
 - Small modifications to regional trigger
 Receiver card, Backplane and Jet/Summary card
- New cluster crate
 - Cards, components and functionality identified
 - Design based on proven technology
 - Data sharing at 160 MHz with a different version of existing backplane
 - > Existing 160 MHz Adder and Sort ASICs
- Design features
 - Minimum additional latency
 - Minimal risk proof of principle exists
- Performance
 - Initial results look good
 - Can be optimized further
 - Simulation code being implemented in ORCA